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HIGH-ANGLE FORMULATION FOR THE NONLINEAR 
PROGRESSIVE-WAVE EQUATION (NPE) MODEL 

INTRODUCTION 

The Nonlinear Progressive-wave Equation (NPE) model [1,2] is part of a numerical simulation 
chain applied to hydroacoustic nonproliferation research. Simulations of ocean detonations [3] are 
performed by Lawrence Livermore National Laboratory using the strong shock CALE model (a 
hydrodynamic code). The NPE model takes input from CALE when shock strength is finite but too 
low for hydrocodes to perform accurately and efficiently. The NPE takes the weak shock input and 
propagates the wave until it can be joined [2] to linear ocean acoustic modes for propagation across 
entire ocean basins. 

THEORY 

The NPE model is based on the following time domain nonlinear wave equation emerging directly 
from the Euler equations of hydrodynamics: 

d2p 
at2 = v2 p + aiaj (py Vi), 

using standard Einstein summation convention, where repeated indices are summed, and where p is 
density, p is pressure, and vi is the fluid velocity. Equation (1) is recast in a wave-tracking frame 
moving horizontally in the r-direction at a speed co, descriptive of the sound speed of the propagation 
medium (the ocean in the present case). The time derivative DIDt in the moving frame is alat + co 
CY&-. Equation (1) cast in the moving frame gives a left-hand side (lhs) that involves derivatives Df, 
c&Dt, and co” a,“, where D, is shorthand for DID t . For a progressive wave, the co2 6’: term offsets a 
linear term in the Laplacian on the right-hand side (rhs) of Eq. (1) after invoking a nonlinear 
equation of state. The original NPE neglects Df in comparison with co&Dt, and r-integrates the result 
to give 

DR a ’ a2 -z P 2 R co -- 
Dt ar 

cl R + co ZR -2---T ?&-, 
Y J ?a (2) 

where R is a dimensionless overdensity p’/ p,,, c1 is c(r) - co, p is a dimensionless nonlinearity 
parameter derived from the equation of state (for water, p=3.5), and rf is an arbitrary point in the 
quiescent medium ahead of the wave. The neglect of the D+? term in an azimuthally symmetric ocean 
is justified when the propagating wave is nearly cylindrical, but cannot be justified at early times when 
the wave is nearly spherical. 
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2 AkLlonald and on-is 

The high-angle NPE2 model is derived by retaining the 0,” term previously mentioned. We isolate 
the portion of Eq. (2) having to do with diffraction, give a derivation of the high-angle diffraction 
step, then reassemble the model by using the fractional step method. Namely, the corrected 
diffraction step is followed by a step in which the refractive and nonlinear terms (the r-derivative term 
in Eq. (2)) are performed. 

The original NPE diffraction step is thus represented by 

DR coR co ‘a2Rdr -=----- 
Dt 2r 2,TF’ J 

The high-angle NPE2 diffraction step (retaining terms dropped from Eq. (3)) is 

z=[-?-$$+-$)+&--$)dr. 

For the sake of finite differences, we represent timestep number n by superscript n, and take 

DR 
Dt E (2&t)-’ (R”+l -R-l) 

D2R - 3 &-2 @“+I 
Dt2 

-2R” + R”-l). 

(3) 

(4) 

(6) 

At timestep n, both Rn and Rnel are known. The NPEZ diffraction step uses an implicit Crank- 
Nicholson representation for the range integral in Eq. (4), with the integrand averaged between steps 
n + 1 and n - 1. All terms involving time level n + 1 are then taken to the lhs of the finite difference 
equation. Initial conditions in space are known at rj ahead of the first arrival where R is assumed 
zero. A trapezoidal rule for the r integral is used, and the solution is integrated backward in space at 
time level n + 1 from r-to all desired values of r. 

NUMERICAL RJm3suLTs 

Benchmark calculations have been performed on the revised NPEZ diffraction step. An analytic 
solution has been obtained [l] for an initially spherical wave in an idealized waveguide with 
boundary conditions R = 0 at z = 0 (pressure release surface) and i&R = 0 at z = - D (perfectly 
reflecting bottom). This does not represent the ocean bottom properly, but does allow a solution by 
using the image method. The calculation grid was 201 by 101 points in the r and z directions, 
respectively. The grid spacing was 6r = 0.7 m, 6z = 3.5 m, and timestep co& = 1.5 m. 

The five curves in Fig. 1 are labeled by the maximum propagation angle in the initial condition. 
Initial conditions are defined at different ranges from the spherical wave source, and the error is zero 
at the initial range. As each benchmark propagates outward in range, the error first grows due to 
truncation errors and approximations made in deriving the NPE. The error reaches a peak and then 
falIs. Why should this happen? As the NPE grid moves farther from the spherical wave source, the 
curvature of the wave decreases, i.e., the propagation angle decreases. The high-angle components 
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Fig. I- Dimensionless root-mean-square error in five different NPE2 benchmark test problems as a function of 
the radial distance from the center of the initially spherical wave to the left side of the moving NPE2 grid 

present initially have group speeds proportional to the cosine of their propagation angle relative to 
the horizontal. As a result, they fall behind, being unable to keep up with the speed co of the moving 
grid. Figure 1 shows that even for the highest propagation angle considered (50”), the maximum 
error peaks at approximately 1% and falls back to about 0.5%. 

Figure 2 shows the result of the same set of calculations performed on the original NPE, which is 
first order in time. In the near field of the source at a range of 0 km, the rms errors of the highest 
propagation angle exceed lo%, a result of having neglected the second time derivative in the moving 
frame as discussed in the theory section. In the far field, however, the rms errors are approximately 
l%, which is comparable to the far-field accuracy of the second order NPE2 model. Again, this is 
because the high-angle components of the wave have fallen behind the frame speed co, leaving only 
those low-angle components for which the first-order NPE is accurate. 

SUMMARY 

The results indicate that the NPE model can indeed be improved in accuracy for high 
propagation angles near a source. Future efforts should address similar considerations for the 
nonlinear terms. 
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Fig. 2 - Dimensionless root-mean-square error in five different original NPE benchmark test problems as 
a function of the radial distance from the center of the initially spherical wave to the left side of the 
moving NPE2 grid 
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